Chapter 4 Assignment Sheet

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Names and symbols of elements 1-10 (1 column)</td>
<td>Thursday, 9/19</td>
</tr>
<tr>
<td>2. *Complete the History of Atomic Theory webquest in Google Classroom</td>
<td>Thursday, 9/19</td>
</tr>
<tr>
<td>3. Names and symbols of elements 1-10 (1 column)</td>
<td>Friday, 9/20</td>
</tr>
<tr>
<td>4. §Finish modelling activity from yesterday’s class if necessary</td>
<td>Monday, 9/23</td>
</tr>
<tr>
<td>5. Names and symbols of elements 1-10 (1 column)</td>
<td>Tuesday, 9/24</td>
</tr>
<tr>
<td>6. Select element for poetry project (sign up in class)</td>
<td>Wednesday, 9/25</td>
</tr>
<tr>
<td>7. §Complete pp. 109-110 #24-26, 29-33, 38, 39</td>
<td>Monday, 9/26</td>
</tr>
<tr>
<td>8. Names and symbols of elements 11-20 (1 column)</td>
<td>Thursday, 9/26</td>
</tr>
<tr>
<td>9. *Find 2 reliable references for atomic poetry project—submit in Google Classroom</td>
<td>Friday, 9/27</td>
</tr>
<tr>
<td>10. Names and symbols of elements 11-20 (1 column)</td>
<td>Monday, 9/30</td>
</tr>
<tr>
<td>11. Finish periodic table webquest if not completed in class</td>
<td>Tuesday, 10/1</td>
</tr>
<tr>
<td>12. Names and symbols of elements 11-20 (1 column)</td>
<td>Wednesday, 10/2</td>
</tr>
<tr>
<td>13. §Complete p. 111 #65-74, 81-86</td>
<td>Thursday, 10/3</td>
</tr>
<tr>
<td>14. Select poem type for poetry project (MUST be one of the listed forms)</td>
<td>Thursday, 10/3</td>
</tr>
<tr>
<td>15. §Complete pp. 110-112 #43-51, 76, 78, 87-91,107, 108</td>
<td>Thursday, 10/3</td>
</tr>
<tr>
<td>16. Work on rough draft of poetry project</td>
<td>Friday, 10/4</td>
</tr>
<tr>
<td>17. §Handout on average atomic mass calculations</td>
<td>Friday, 10/4</td>
</tr>
<tr>
<td>18. §Chapter 4 concept map</td>
<td>Tuesday, 10/1</td>
</tr>
<tr>
<td>19. §Chapter 4 Review Sheet</td>
<td>Wednesday, 10/2</td>
</tr>
<tr>
<td>20. Study for Ch. 4 Test</td>
<td>Thursday, 10/3</td>
</tr>
<tr>
<td>21. §Rough draft of poetry project (must include 4 stanzas)</td>
<td>Tuesday, 10/1</td>
</tr>
</tbody>
</table>

Dates to Remember:

§may be checked or collected in class

*will be checked online

- **Chapter 4 Test:** Thursday, 10/3
- **Rough draft of element poetry project due:** Friday, 10/4

Historical models:
- Democritus
- Lavoisier
- Proust
- Dalton

Components of an atom:
- Neutrons
- Protons
- Electrons
- Nucleus
- Atomic number
- Mass number
- Rutherford
- Cations
- Anions

Atomic number:
- Thomson
- Cathode ray tubes
- Oil drop experiment
- Millikan
- Anions

Isotopes:
- Gold foil experiment
- Average atomic mass

Periodic table:
- Group
- Period

Element:
- Mendeleev
- Moseley
- Periodic table
After studying chapter 4, you should be able to:

- Explain the law of conservation of mass, the law of definite proportions, and the law of multiple proportions.
- Summarize the five essential points of Dalton’s atomic theory.
- Distinguish among protons, neutrons, and electrons in terms of their relative masses and charges.
- Explain the structure of an atom, including the location of the proton, neutron, and electron with respect to the nucleus.
- Explain how atomic number identifies an element.
- Infer the number of protons, electrons, and neutrons using the atomic number and mass number of a neutral atom or an ion.
- Summarize the observed properties of cathode rays that led to the discovery of the electron.
- Summarize Rutherford’s experiment that led to the discovery of the nucleus.
- Explain how Millikan’s oil drop experiment determined the charge on an electron.
- Explain how isotopes of an element differ.
- Explain, using concepts of isotopes, why the atomic masses of elements are not whole numbers.
- Calculate the average atomic mass of an element from isotope data.
- State the names and symbols of elements 1-20.
- Relate the formula of a compound to the numbers and types of atoms in the compound.
- Explain the roles of Mendeleev and Moseley in the development of the periodic table.
- Distinguish between a group and a period in the periodic table.
- Categorize the elements as main group element, noble gas, transition metal, metalloid, or inner transition metal (the lanthanides and actinides).
- Compare the properties of metals, nonmetals and metalloids.
- Infer the charges of monatomic ions from the location of the parent element in the periodic table.
- State the seven diatomic elements.
- Describe physical properties of common elements.

Some Useful Websites

http://www.sciencegeek.net/Chemistry/taters/directory.shtml Look at the Unit 1 benchmark 1 activities
https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Book%3A_Introductory_Chemistry_(CK-12)/04%3A_Atomic_Structure/4.04%3A_Law_of_Multiple_Proportions
https://hemantmore.org.in/science/chemistry/law-multiple-proportions/892/ Multiple Proportions

https://chemfiesta.org/2015/03/23/all-about-the-atom/
https://history.aip.org/history/exhibits/electron/jj1897.htm Thomson’s experiments
http://chemedchem.purdue.edu/generchem/history/thomson.html Thomson’s work
http://wps.prenhall.com/wps/media/objects/3310/3390185/blb0202.html Thomson & Rutherford
https://phet.colorado.edu/en/simulation/rutherford-scattering
http://micro.magnet.fsu.edu/electromag/java/rutherford/ A simulation of Rutherford’s experiment

http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/ruther14.swf Uses Flash, not compatible with MacBooks
http://glencoe.com/sec/science/physics/ppp_09/animation/Chapter%2021/Millikans%20Oil-Drop%20Experiment.swf Simulation of Millikan’s experiment (uses Flash, not Macbook compatible)
https://courses.lumenlearning.com/introchem/chapter/millikans-oil-drop-experiment/
https://www.youtube.com/watch?v=nwnjYERS66U Millikan’s oil drop experiment

http://particleadventure.org/other/history/index.html Timeline for the history of particle physics
http://www.mrbigler.com/Chem1-C1/topics/pt/PT-parts.html Regions of the periodic table
http://www.rsc.org/periodic-table An interactive periodic table
https://ptable.com/ A dynamic periodic table
http://www.learner.org/interactives/periodic/groups.html An interactive tour of the key chemical families